A noisy dinner? Passive acoustic monitoring on the predator-prey interactions between Indo-Pacific humpback dolphins and croakers

Tzu-Hao Lin, Shane Guan, Wen-Ching Lien, Chih-Kai Yang, Lien-Siang Chou

1 Institute of Ecology and Evolutionary Biology, National Taiwan University 2 Office of Protected Resources, National Marine Fisheries Service

schonkopf@gmail.com

Introduction

Indo-Pacific humpback dolphin (*Sousa chinensis*)
- Coastal and estuarine species
- Croakers, anchovies, and sardines are the most important prey families (Barros et al. 2004)

Croaker
- Benthic species in shallow coastal waters
- At least 20 species in Taiwanese waters
- Nighttime chorus (Mok et al. 2011)

Do humpback dolphins alter their distribution and behavior according to the calling behavior of croakers?

Study Area

Figure 1. Map of study area. Humpback dolphins were frequently encountered near the stations B & C according to visual observations.

Passive Acoustic Monitoring

SM2+ recorders & HTI-96-MIN hydrophone
- Sensitivity: -165 dB re 1 V/μPa
- Sampling rate: 96 kHz
- Data collection: 2013 – 2014 (>1000 hours)
- Bottom mounted by anchors

Analysis of Acoustic Data

Echolocation clicks
- Automatic detection based on signal-to-noise ratios in two frequency bands: <8 kHz & >20 kHz
- Time resolution: 1 ms

Croaker chorus
- Identify the chorusing period based on the threshold of median(SPL) + 3 dB

Predator-Prey Interactions

Spatial variations of detection results
- More echolocation clicks and short-range biosonars at stations B, C
- Longer duration of croaker chorus at stations B, C, D

Croaker chorus

Diurnal variations of detection results
- Croaker choruses were most evident between 6 P.M. and 4 A.M.
- More clicks were detected between 9 P.M. and 12 P.M.

Conclusion and outlook

- Humpback dolphins prefer shallow waters with prominent croaker calls
- The diurnal behavior of humpback dolphins could be associated with the croakers, but was not completely matched
- Further investigations by using hydrophone arrays are necessary

References

Acknowledgements

This work was part of the project: “The investigation of physiological and ecological effects of offshore wind farm on *Sousa chinensis* [II]” supported by Ministry of Science and Technology (MOST 104-2313-E-002-013). Field works were supported by the Swancor company. The authors thank Mei Li-Ching, Chang-Mu Hao, and members from NTU cetacean lab for their support in field works.